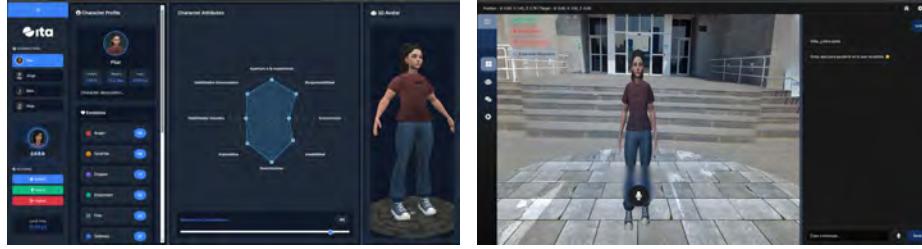


Towards an Open Platform for Evaluating Conversational Assistants with Empathy, Negotiation and Procedural Fairness

Rafael del-Hoyo-Alonso¹[0000-0003-2755-5500], Patricia Pérez-Curiel², Rosa M. Montañés-Salas¹[0000-0003-4636-5868], and Juan Carlos Bustamante²[0000-0002-8201-0469]

¹ Aragon Institute of Technology, 50008 Zaragoza, Spain
`{rdelhoyo,rmontanes}@ita.es`
<http://www.ita.es>


² Department of Psychology and Sociology, Faculty of Education, University of Zaragoza, Zaragoza, Spain
`{patricia.perez,jbustama}@unizar.es`

Abstract. We present an open platform to design, evaluate, and govern conversational assistants focused on empathy, negotiation and procedural fairness. It integrates: (i) a *persona compiler* that operationalises OCEAN traits (and extended style variables, e.g., socio-emotional skills) into conversational parameters; (ii) a *human-in-the-loop* (HITL) lab with full traceability; and (iii) an *automated multi-agent system that simulates scenarios and then evaluates the resulting dialogues*. Results are reported as 0–100 KPIs grouped into four families (technical robustness, empathy/communication, negotiation/conflict, ethics/fairness).

1 Introduction and Foundations

Conversational assistants' effectiveness depends not only on factual accuracy but also on *how* interactions are conducted—recognising constraints and emotions, communicating clearly, and reaching workable, fair agreements [1, 2]. Building on this premise, this project presentation sets out three goals, each aligned with the project's core modules: (i) a *persona compiler* that maps OCEAN (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism) traits into conversational controls; (ii) a *human-in-the-loop* (HITL) lab for traceable evaluation; and (iii) an *automated multi-agent system that simulates scenarios and then evaluates the resulting dialogues via a blind LLM (Large Language Model) evaluator* producing decision-ready indicators. Procedural fairness is treated as a third pillar alongside empathy and negotiation, guiding both measurement.

Key definitions. **Effectiveness** entails achieving the task goal while preserving *relational quality* (satisfaction, trust, procedural justice) within domain policies. **Empathy** has *cognitive* (perspective-taking) and *affective* (validation with calibrated tone/pace) components. **Personality (OCEAN/FFM)** denotes the

(a) Persona compiler module. (b) Human Interaction and Evaluation.

Fig. 1: Platform UI screenshots: persona configuration and assistant module.

Five-Factor Model. **BFI-2** (Big Five Inventory-2) is a 60-item questionnaire with 15 facets that measures the five OCEAN traits [3]. **IPIP** (International Personality Item Pool) is a public-domain item bank used to construct Big-Five scales across languages [4]. Both are *measurement instruments*, not alternative models. The Personality model OCEAN/FFM is a widely used framework of five broad, relatively stable traits, commonly operationalised through BFI-2 and IPIP [3, 4], and modulate conversational behaviour (e.g., *Openness* → exploration; *Conscientiousness* → structure; *Extraversion* → initiative; *Agreeableness* → mitigators; lower *Neuroticism* → calibrated hedging). We distinguish stable *traits* from situational *states*. This distinction underpins the increasingly feasible inference of traits from dialogue traces [5, 6].

2 Proposed Platform and Decision-Oriented Metrics

2.1 Architecture

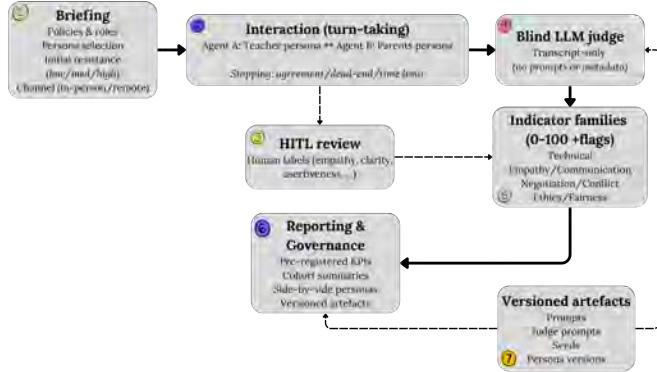
The platform is a Python/JavaScript server for end-to-end creation, testing, and evaluation of conversational assistants. It has three modules: (1) a persona compiler; (2) a human-in-the-loop lab that records traceable sessions; and (3) multi-agent simulation scenarios and automatic scores. Figure 1 shows the operator UI. Unlike prior toolkits that optimise only technical metrics or task success, this system unifies trait-based configuration, HITL evidence, and independent judging in a pipeline for empathy and negotiation evaluation.

2.2 Module 1 — Persona Compiler (Psychological and Contextual)

Links to goals: delivers Goal (i) by compiling OCEAN traits, style, and policy constraints into a coherent, controllable profile (Table 1). The compiler generates a prompt for the LLM system instructions, templates, and placeholders for controlling *assertiveness*, *mitigation density*, *open-question preference*, *ambiguity tolerance*, *apology threshold*, and *justification extent*. The trait → control mapping (derived from education/counselling expertise and piloted in HITL ablations) yields consistent, auditable multi-turn style. Inputs: (i) OCEAN/FFM profile; (ii)

Table 1: The persona compiler translates OCEAN traits into conversational parameters that constrain style and promote multi-turn consistency.

Trait (OCEAN)	Control	Example	Purpose
Agreeableness ↑	Mitigation density ↑; affiliative markers ↑	“I see your point; perhaps we could...” / “Would it help if...?”	Reduce face-threat; de-escalation
Conscientiousness ↑	Structuring / summaries ↑; follow-ups ↑	“Let me summarise in 3 steps...” / “Next, we’ll...”	Clarity; plan adherence
Openness ↑	Open questions ↑; option generation ↑	“What alternatives would fit your schedule?”	Exploration; shared problem-solving
Extraversion ↑	Initiative ↑; engagement markers ↑	“Great—let’s tackle this together.”	Momentum; rapport
Emotional stability ↑ (↓ Neuroticism)	Uncertainty markers ↑; hedging ↑	“Based on the current policy, it is likely that...”	Risk awareness; calibrated claims
Self-esteem ↑	Assertiveness target ↑; apology threshold ↑	“I recommend option A because...”	Decisiveness without over-apologising
Socio-emotional skills ↑	Validation and perspective-taking ↑	“It’s understandable this feels stressful given...”	Cognitive/affective empathy cues
Ambiguity tolerance ↑	Preference for provisional commitments ↑	“We can pilot this for a week and revisit.”	Adaptive planning under uncertainty


role/domain constraints; (iii) policy boundaries. Higher Agreeableness → affiliative markers; Conscientiousness → structure/summaries; Openness → exploration; emotional stability → calibrated hedging. With avatars, voice/prosody/gesture bindings prevent form–content mismatch. Table 1 summarises the mapping.

2.3 Module 2 — Human Interaction and Evaluation (HITL Lab)

Links to goals: operationalises Goal (ii) by enabling human evaluator–assistant sessions while logging content and dynamics. Sessions are fully traceable (logs, timestamps, persona/version IDs, policy flags). Outputs cover process (time/turns to resolution, escalations, violations) and communication indicators (clarity, validation, proportional assertiveness), normalised into 0–100 scales; additional human annotations act as reference labels for comparison with automated judging and for consistency.

2.4 Module 3 — Automated Evaluation (Multi-Agent Simulation)

Links to goals: implements Goal (iii) by generating role-conditioned simulations until a stopping criterion (agreement, dead-end, time limit) is reached and subse-

Fig. 2: Case flow: *Briefing* (policies, roles, personas, resistance, channel), *Interaction* (turn-taking to agreement/dead-end/time limit), *Blind LLM judging* (four metric families, 0–100 + flags), and *HITL review* (human labels for validation and governance).

quently scoring transcripts with a *blind LLM judge* to produce decision-ready indicators. Case-based scenarios support test batteries across traits/attitudes [7]. Artifacts such as prompts, seeds, and model versions are versioned; the back end is model-agnostic with monitored tail latency and time-out fallbacks. Constraints are handled pragmatically: API limits/cost, seeded runs for reproducibility, change-controlled guardrails and judge prompts. Indicators support go/no-go decisions in sensitive settings: (1) technical reliability; (2) empathic, clear communication; (3) timely, workable and fair agreements; (4) safety, bias control, and transparency. Most metrics are 0–100 with pre-registered pass/fail flags. Judges assess *transcripts only*—plus paralinguistic/visual cues when available—without access to prompts or model metadata. Indicator families: **Technical robustness** (coherence, perceived humanity, error rates, tail latency, redundancy); **Empathy/communication** (empathy, clarity, proportional assertiveness, inferred OCEAN/persona consistency, tension, alliance); **Negotiation/conflict** (agreement quality—clarity/verifiability, fairness, pedagogical alignment—time/turns, FCR, escalation, policy compliance, action plans); **Ethics/fairness** (toxicity, PII exposure, conversational bias, transparency).

3 Case Study: Primary Education — Design and Results

We stress-tested *empathy/communication* and *negotiation/conflict* behaviours in a primary-education setting: a teacher–parent meeting concerning a pupil with *impulsivity*, low frustration tolerance, difficulty accepting norms, and limited emotional autonomy. The study uses our automated judging setup (blind LLM judge, transcript-only) and reports via the four indicator families. A multi-agent simulation instantiates *Teacher* and *Parent* agents parameterised by OCEAN-style constraints. We sampled teacher/parent archetypes and initial resistance levels to stress-test behaviour (definitions and ranges in the Appendix A). Independent variables: parent archetype, initial resistance (low/medium/high), and

channel (in-person vs. remote). Dependent variables (family KPIs) include empathy, clarity, proportional assertiveness, time/turns to resolution, first-contact resolution (FCR), escalation, policy compliance, and alliance. Flow: briefing (policies, roles, personas, resistance, channel), a 12–15-minute turn-taking dialogue with stopping criteria, and a debrief/scoring step producing KPIs plus a HITL review for alignment checks with the judge. We report medians/IQRs per archetype/channel and flag rates (agreement, FCR, policy non-compliance, toxicity). *Test-retest*: five scenarios × ten evaluators yielded 85% mean consistency. *Archetype identification*: 92% accuracy over 100 decisions; Parents 100%, Teachers 84%. The hardest setting was Autonomy SAGE (Teacher) × EXPLORER (Parent) with 50% consensus on the Teacher side. Correlations between *empathy_score* and perceived humanity varied (weak→ strong positive for Parents; occasionally negative for Teachers). **Errors by model**: 8/100 in total (all Teacher): deepseek_chat_v3.1 (3), claude_sonnet_4 (2), and three models with 1; five models had 0.

4 Conclusions and Limitations

Under controlled conditions, the platform tests, compares, and governs assistants, making human-centred capabilities measurable alongside technical and fairness indicators. It integrates OCEAN-based persona control, a traceable human-in-the-loop lab, and blind-LLM-judged multi-agent simulations, yielding decision-ready 0–100 KPIs across four indicator families, and supported by versioned artifacts for comparability and governance.

Evidence is limited by synthetic scenarios and a modest, single-domain sample (5 scenarios; 100 decisions in the case study), and transcript-only judging can miss prosodic/visual cues, affecting empathy and clarity, while occasional persona drift and gaps in transparency/disclosure highlight the need for calibration against human labels and stronger policy safeguards.

Future work will broaden cohorts and domains, incorporate multimodal signals (voice, prosody, avatar/gesture), report inter-rater agreement (κ /ICC) with systematic judge calibration, and study longitudinal performance (drift, cost, impact) with fairness checks.

Acknowledgments. This research was funded by the Department of Big Data and Cognitive Systems at the Aragon Institute of Technology, under Retech Tourism-Spain Living Lab Agreement and by the Government of Aragon.

References

1. Meng, J., Dai, Y.N.: Emotional support from AI chatbots: Should a supportive partner self-disclose or not? *Journal of Computer-Mediated Communication* **26**(4), 207–222 (2021).

2. Lee, M. K., Jain, A., Cha, H. J., Ojha, S., Kusbit, D.: Procedural justice in algorithmic fairness: Leveraging transparency and outcome control for fair algorithmic mediation. *Proceedings of the ACM on Human-Computer Interaction* **3**(CSCW), 182:1–182:26 (2019).
3. Soto, C.J., John, O.P.: The Next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. *Journal of Personality and Social Psychology* **113**(1), 117–143 (2017).
4. Goldberg, L.R., Johnson, J.A., Eber, H.W., Hogan, R., Ashton, M.C., Cloninger, C.R., Gough, H.G.: The International Personality Item Pool and the future of public-domain personality measures. *Journal of Research in Personality* **40**(1), 84–96 (2006).
5. Naz, S., Alshahrani, H., Bukhari, A.H., Muhammad, A., Elzawawy, A., Awan, M.J.: A comprehensive survey of machine learning and deep learning approaches for Big Five personality detection. *Artificial Intelligence Review* (2025).
6. Fan, S., Dal Monte, O., Chang, S.W.C.: Levels of naturalism in social neuroscience research. *iScience* **24**(7), 102702 (2021).
7. Kwon, D., Weiss, E., Kulshrestha, T., Chawla, K., Lucas, G.M., Gratch, J.: Are LLMs effective negotiators? Systematic evaluation of the multifaceted capabilities of LLMs in negotiation dialogues. arXiv:2402.13550 (2024).

A Example Results (gpt-5; SAGE-EXPLORER Scenario)

Scope and alignment with the main text. This appendix provides a compact, decision-oriented read-out for the primary-education scenario used in the case study (Sec. 2). It illustrates how the four indicator families are reported after a simulated dialogue is scored by a *blind LLM evaluator* (transcript-only).

Glossary (used in appendices). **OCEAN**: Five-Factor Model traits (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism). **FCR**: First-Contact Resolution (agreement without escalation). **PII**: Personally Identifiable Information. **Persona consistency**: correlation between configured OCEAN vector and trait inference from the transcript.

Scenario configuration (summary). Teacher persona: *SAGE*. Parent persona: *EXPLORER*. Resistance: medium. Channel: in-person. Simulations are seeded for reproducibility; guardrails and judge prompts are versioned (change-controlled). The assistant under test is *gpt-5*.

How to read the results. Scores are scaled to 0–100. Each family yields a small set of KPIs plus pass/fail flags pre-registered for quick inspection (e.g., `transparency_ok`). *Technical* covers coherence, repetition and latency flags; *Empathy/communication* includes empathy, clarity, assertiveness, tension and alliance; *Negotiation/conflict* includes agreement quality, time/turns, FCR and policy compliance; *Ethics/fairness* covers toxicity, PII exposure, bias and transparency.

Table 2: Compact summary of key indicators (gpt-5; scenario autonomy_SAGE_EXPLORER_rep_001).

Category	Indicator	Value
Persona/OCEAN	Teacher detected / consistency	GOVERNANCE / 58; OCEAN 60
	Parent detected / consistency	EXPLORER / 92; OCEAN 88
Technical	Coherence / Repetition	93 / 22
	Humanity (Teacher / Parent)	58 / 87 (<i>all_ai=false</i>)
	Timeouts / Latency	none / none
Empathy	Empathy / Clarity / Assert.	92 / 95 / 80 (all OK)
	Tension (level) / Alliance	18 (<i>low</i>) / 96
Negotiation	Agreement quality	88 (OK)
	Turns / Time / FCR / Escal.	7 / 420s / true / false
	Compliance / Conflict Mgmt	100 / 91
	Action plan	present (class+home+logbook; 1 month review)
Ethical	Toxicity / PII / Bias	0 / 10 / 0 (all OK)
	Transparency	0 (<i>not OK</i>)

Role detection and persona drift. The detector tagged the teacher side as *GOVERNANCE* (i.e., a more rule-centred behavioural pattern) with moderate persona consistency (58/100; OCEAN 60/100), while the parent matched the configured *EXPLORER* (consistency 92/100; OCEAN 88/100).

Technical. Dialogue coherence was high (93/100) with low repetition (22/100) and no timeout/latency flags. Perceived humanity diverged by role: teacher 58 vs. parent 87, suggesting more templated teacher turns versus more varied parent turns.

Empathy and communication. Empathy 92, clarity 95, assertiveness 80 (all within target ranges). Tension 18 (*low*) and alliance 96. The inferred assistant OCEAN profile ($O=86, C=92, E=76, A=95, N=10$) aligned with policy settings (*persona_consistent=true*), though with a tilt towards high structure (see drift note).

Negotiation and conflict. Agreement quality 88 (OK) in 7 turns / 420s; *FCR=true*; no escalation. Policy compliance 100. Conflict-management composite 91. A verifiable action plan was produced (class PBL, home hands-on challenge, shared logbook, 1-month review).

Ethics and fairness. No harmful content detected (toxicity 0; bias 0). PII exposure 10/100 (*pii_flag=false*). Transparency was not present in the transcript (0/100), indicating that explicit AI disclosure/escalation paths should be enforced as policy.

Takeaways. Strong conversational quality and socio-emotional performance with swift, compliant resolution and a concrete follow-up plan. Primary risks: (i) teacher-side persona drift towards a governance style; (ii) missing transparency disclosure. Mitigations: stricter persona guards and mandatory disclosure prompts.

B Sample Dialogue: Autonomy and Personal Responsibility (Sage–Explorer)

Purpose. To ground the quantitative report above, this appendix provides an excerpted, translated dialogue illustrating the sequence recommended in the main text (acknowledge emotion → clarify rules/objectives → co-design proportionate solutions).

Scenario ID: autonomy_sage_explorer Theme: tutoring on autonomy and personal responsibility Configured personas: Teacher = Sage; Parent = Explorer

Translated conversation (EN):

1. **Teacher:** Thank you for attending. We observe *impulsivity, low frustration tolerance, and limited emotional autonomy*. I suggest a coordinated home–school plan. First, I would like to hear your perspective.
2. **Parent:** Thanks for asking first. What you call “*impulsivity*”, I call *energy*; he needs to move and explore. In a factory, when a part does not fit, you try a different way or a new tool. He should try different ways, not always the same one.
3. **Teacher:** The factory analogy fits well. Your son’s *energy* is a strength; our goal is to help him choose those “*other tools*” when frustration appears. Shall we explore options at school and at home to support that?
4. **Parent:** Agreed. Tools, but not just talk—he learns by doing. Why not a build project with others in class? I can set similar challenges at home.
5. **Teacher:** Excellent. Project-based learning builds perseverance and collaboration. We will start a small ecosystems project next week. Let us also use the diary as a “*logbook*” to share progress between home and school.
6. **Parent:** Perfect. A tangible project is what he needs. The diary “*logbook*” sounds practical. We will add a home construction challenge so he plans before jumping in.
7. **Teacher:** Great—then the joint plan is: project team next week, home challenge, and diary logbook to track small wins. Let us review in a month to adjust as needed. Do we have an agreement? (SESSION END)